
SWEN 262

Engineering of Software Subsystems

Anatomy of a Pattern
What are design patterns?
● A pattern is a general solution

to a problem in context.
○ general - only provides an outline

of the approach
○ problem - some recurring issue
○ context - the specific system being

designed, and the expected design
evolution

● Patterns are not code. They are
generic recipes that may be
followed to create a solution to
a specific problem. Christopher Alexander is considered to

be “the father of pattern language.”

Each pattern describes a problem which
occurs over and over again in our

environment, and then describes the
core of the solution to that problem, in

such a way that you can use this solution
a million times over, without ever doing it

the same way twice.

https://en.wikipedia.org/wiki/Christopher_Alexander

Anatomy of a Pattern
Patterns allow us to gain from the
experience and mistakes of others.
● Design for reuse is difficult.
● Experienced designers:

○ Rarely start from first principles.
○ Apply a working “handbook” of

approaches

● Patterns make this experiential
knowledge available to all.

● Patterns also help evaluation of
alternatives at a higher level of
abstraction.

Patterns are not invented. They are
discovered.

Over time, experienced engineers
learn the “best practice” for solving a
specific recurring problem.

This is a process of trial, error, and the
testing of a set of alternatives.

Eventually a good solution is found
and documented for others to use.

Sometimes a better solution is
discovered later.

Pattern Intent
The most important piece of
information about a pattern is intent.
● The intent provides a general

indication of when a pattern is
appropriate.

○ What is the nature of the problem or
problems that the pattern is meant to
solve?

○ In what kind of environment or system is
it appropriate to use the pattern?

Some intentions may be familiar
sounding...

“Provide a way to access the
elements of an aggregate object
sequentially without exposing its

underlying representation.”

...while others will not.

“Encapsulate a request as an
object, thereby letting you
parameterize clients with

different requests, queue or log
requests, and support undoable

operations.”

Pattern Classification
The design patterns in the
Gang-of-Four text are mainly
classified according to the purpose of
the pattern’s intent.
● Creational - The intent is mainly

about creating objects.
● Structural - The intent is mainly

about the structural relationship
between objects.

● Behavioral - The intent is mainly
about the interactions between
objects.

You can see which patterns are in
which categories at a glance by
referring to the list on the inside
front cover of the book.

Binding Time
A second dimension of classification is binding time.
● Using inheritance is compile-time (early) binding.

○ Class-based.
● Using delegation or composition is run-time (late)

binding.
○ Object-based.

● Creational
○ class: defer creation to subclasses.
○ object: defer creation to another object (delegate).

● Structural
○ class: structure via inheritance
○ object: structure via composition

● Behavioral
○ class: algorithms/control via inheritance.
○ object: algorithms/control via object groups.

Pattern Application
To apply a pattern you need to
understand:
● Structure

○ The static class relationships between
elements of the pattern.

● Participants
○ Each class/object in the pattern
○ The responsibilities of each class/object

● Collaborations
○ The general description of interactions

between participants
○ The sequence diagram defining interactions

Note that GoF structure notation
is OMT (pre-UML). See Appendix
B for a guide on the notation.

Consequences
Every pattern has a set of associated
consequences that describe the nuances
of pattern usage including:
● How does the structure support the

intent of the pattern?
● What are the trade-offs in pattern

usage?
● Where are the variation points?

Consequences may include both benefits
and potential drawbacks.
● Makes it easier to add new kinds of

components.
● Can make the design overly general.

Beware of force fitting a pattern
into a problem that it is not suited
for.

Like any other tool, a pattern can
become a golden hammer.

Implementation Details
Implementation details for a specific
pattern may vary from one language to
the next.

Different languages may have
language-specific:
● Pitfalls to avoid when implementing

the pattern.
● Hints and techniques for applying

the pattern.
● Design choices.

In SWEN 262, your team is free
to choose a framework in which
to work, as long as the language
in which you implement your
patterns is full object-oriented.

Being that it is a pure
Object-Oriented language,
implementing patterns in Java is
straight forward.

Documenting Pattern Structure
● Every GoF Pattern has a class

structure diagram.
○ Each participant in the pattern is

documented as a class or an interface.
○ The diagrams in the GoF text are not

standard UML.

● When you document your patterns,
you will create a UML class
diagram.

○ Use context-specific class names -
names appropriate to the system that
you are designing in context, i.e.
drawn from your domain analysis.

○ Each class that plays a role in the
pattern will have its pattern
stereotype in <<guillemets>> beneath
its name.

Your pattern diagrams should use
standard UML notation with class names
that fit the context of your application.

But each class that is a participant in your
pattern implementation should be clearly
identified with the name of its role in
<<guillemets>> below the class name.

GoF Pattern Cards
● As we’ve mentioned before, documentation

is a very important part of your grade in
this course.

● Properly documenting your design,
including UML class and sequence diagrams
is important.

● Just as important is specifying your
rationale for major design decisions: why
you made the choices that you made.

○ What were the benefits?
○ What were the trade offs? Why were they

acceptable?
● Frequently these design decisions include

implementing a pattern in your
architecture.

● GoF patterns should be documented using a
GoF Pattern card.

Let’s take a detailed look at a
GoF pattern card example...

GoF Pattern Cards
Name: GoF Pattern:

Participants

Class Role in Pattern Participant’s Contribution in the context of
the application

Deviations from the standard pattern:

Requirements being covered:

GoF Pattern Cards
Name: GoF Pattern:

Participants

Class Role in Pattern Participant’s Contribution in the context of
the application

Deviations from the standard pattern:

Requirements being covered:

The name of the subsystem in your
architecture.

The name of the GoF pattern being
implemented.

The name of each class in your
subsystem that implements part of
the pattern.

The name of the role that each of
your classes plays in the GoF
pattern.

Any changes that you made to the
standard pattern, and why.

The requirements (name and
number) that your implementation
is satisfying.

A detailed description (i.e. at least
2-3 sentences) of how each of your
classes contributes to the pattern in
context.

GoF Pattern Cards Name: Image Receiver System GoF Pattern: Observer

Participants (don’t write anything here)

Class Role in Pattern Participant’s Contribution in the context of
the application

Image Receiver Subject, Concrete
Subject

A service that provides a network API used by external
imaging devices to upload newly captured images into the
system. Notifies observers upon receipt of new images.

Image Processor Observer Interface implemented by observers that wish to be notified
when new images arrive.

DCOM Image Processor Concrete Observer Registers to be notified when images arrive. If the images
are in the DICOM format it transfers the images and
updates the database.

ACR Image Processor Concrete Observer Registers to be notified when images arrive. If the images
are in ACR-NEMA format, the image is translated to the
DICOM format. Extends DICOM Image Processor.

Deviations from the standard pattern: The notify method on each concrete observer returns a boolean.
Observers are called in the order in which they are registered. If an observer returns “true,” indicating that the
image was handled, no additional observers are notified (the notification process is short circuited).

Requirements being covered: 1 (interface with medical imaging devices, support multiple image formats), 2
(accept images from imaging devices), 3 (store images in DICOM format)

